Structural Ramsey theory and topological dynamics III

L. Nguyen Van Thé

Université Aix-Marseille 3

February 2011

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

February 2011 1 / 20

- From previous lecture: When 𝔅 countable ordered ultrahomogeneous structure, Aut(𝔅) is extremely amenable iff 𝔅 has the Ramsey property.
- Today: What if $Aut(\mathbb{F})$ is not extremely amenable?

Part V

Universal minimal flows

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

February 2011 3 / 20

G-flows

Definition

Let G be a Hausdorff topological group. A G-flow is a continuous action of G on a compact Hausdorff space X. Notation: $G \curvearrowright X$.

 $G \curvearrowright X$ is minimal when every $x \in X$ has dense orbit in X:

$$\forall x \in X \quad \overline{G \cdot x} = X$$

 $G \curvearrowright X$ is universal when:

 $\forall G \frown Y \text{ minimal,} \quad \exists \pi : X \longrightarrow Y \text{ continuous, onto, and so that} \\ \forall g \in G \quad \forall x \in X \quad \pi(g \cdot x) = g \cdot \pi(x).$

"Every minimal G-flow is a continuous image of $G \curvearrowright X$."

Universal minimal flow

Theorem (Folklore)

Let G be a Hausdorff topological group.

Then there is a unique G-flow that is both minimal and universal. Notation: $G \curvearrowright M(G)$.

General question: Describe $G \curvearrowright M(G)$ explicitly when G is a "concrete" group.

Remark

- ▶ *M*(*G*) may not be metrizable (E.g. *G* discrete)
- G is extremely amenable iff M(G) is a singleton.

Proof.

If G is extremely amenable, then its action on M(G) has a fixed point. by minimality, M(G) is a singleton.

If M(G) is a singleton, and G acts on a compact space, then any minimal subflow is a singleton, hence a fixed point.

The first non-trivial metrizable universal minimal flow

Theorem (Pestov, 98) Homeo₊(\mathbb{S}^1) $\land M(Homeo_+(\mathbb{S}^1))$ is the natural action $Homeo_+(\mathbb{S}^1) \land \mathbb{S}^1$.

Proof. Fix $x \in \mathbb{S}^1$, H := Stab(x). Then $H \cong Homeo_{+}([0, 1])$, extremely amenable. Write $G = Homeo_+(\mathbb{S}^1)$, and let $G \curvearrowright X$ be minimal. It induces $H \curvearrowright X$, so find $x_0 \in X$, *H*-fixed. Let $\pi: G \longrightarrow X, g \mapsto g_{X_0}$. Clearly, if $g^{-1}h \in H$, then $\pi(g) = \pi(h)$. So really, $\pi: G/H \longrightarrow X$. Note: it is *G*-equivariant. Check that $G/H \cong \mathbb{S}^1$, and that $G \curvearrowright G/H$ is the natural action $G \curvearrowright \mathbb{S}^1$. Finally, π onto by minimality of X.

Applying Pestov's quotient method

Let ${\mathbb F}$ be countable, ultrahomogeneous.

Assume $\mathbb{F}^* = (\mathbb{F}, R_1^* \dots R_m^*)$ relational expansion of \mathbb{F} with Ramsey property.

Then we can construct a universal $Aut(\mathbb{F})$ -flow as follows:

Write
$$G := \operatorname{Aut}(\mathbb{F}), \ G^* = \operatorname{Aut}(\mathbb{F}^*).$$

Let $G \curvearrowright X$ be minimal.

It induces $G^* \cap X$.

By Ramsey property for \mathbb{F}^* , G^* is extremely amenable, so find $x_0 \in X$, G^* -fixed.

Let $\pi : G \longrightarrow X$, $g \mapsto gx_0$. Then $\pi(g)$ depends only on $[g] \in G/G^*$, and really, $\pi : G/G^* \longrightarrow X$.

$$\begin{aligned} \pi: G/G^* &\longrightarrow X. \\ \text{Note that for } g, h \in G: \\ g^{-1}h \in G^* \text{ iff } \forall i \leq m \ \forall \bar{x} \in \mathbb{F}^{a(i)} \ R_i^*(g^{-1}h\bar{x}) \Leftrightarrow R_i^*(\bar{x}) \\ & \text{iff } \forall i \leq m \ \forall \bar{x} \in \mathbb{F}^{a(i)} \ R_i^*(g^{-1}\bar{x}) \Leftrightarrow R_i^*(h^{-1}\bar{x}) \\ & \text{iff } \forall i \leq m \ gR_i^* = hR_i^* \ (\text{logic action}) \end{aligned}$$

Therefore: $G/G^* = G \cdot (R_1^* \dots R_m^*) \subset \prod_{i=1}^m 2^{\mathbb{F}^{a(i)}}. \\ \text{And so } \pi: G \cdot (R_1^* \dots R_m^*) \longrightarrow X \end{aligned}$
Thus, if π is "uniformly continuous", it extends to

$$\hat{\pi}:\overline{G\cdot(R_1^*\ldots R_m^*)}\longrightarrow X$$

Note that $\hat{\pi}$ is *G*-equivariant, and onto by minimality of *X*. This proves that $G \curvearrowright \overline{G \cdot (R_1^* \dots R_m^*)}$ is universal...

...And so any minimal subflow of $G \curvearrowright \overline{G \cdot (R_1^* \dots R_m^*)}$ is universal and minimal, and hence is the universal minimal flow.

Remark

To have uniform continuity of π , the projection of the right-invariant metric of G onto G/G^* is the relevant one: $d_R(g,h) = d_L(g^{-1},h^{-1})$.

Minimality of $X^* := \overline{G \cdot (R_1^* \dots R_m^*)}$ Definition

Say that $Age(\mathbb{F}^*)$ has the expansion property over $Age(\mathbb{F})$ when

 $\forall A \in \operatorname{Age}(\mathbb{F}), \ \exists B \in \operatorname{Age}(\mathbb{F}) \ \forall A^*, B^* \text{ expansions of } A, B \text{ in } \operatorname{Age}(\mathbb{F}^*), \\ A^* \hookrightarrow B^*.$

Theorem (KPT, 05)

Aut(\mathbb{F}) $\curvearrowright X^*$ minimal iff Age(\mathbb{F}^*) has expansion property over Age(\mathbb{F}). Theorem (KPT, 05)

Let \mathbb{F} be countable, ultrahomogeneous. Assume $\mathbb{F}^* = (\mathbb{F}, R_1^* \dots R_m^*)$ relational expansion of \mathbb{F} . TFAE:

\$\mathbb{F}^*\$ has the Ramsey property and Age(\$\mathbb{F}^*\$) has the expansion property over Age(\$\mathbb{F}\$).

2. $\operatorname{Aut}(\mathbb{F}) \cap M(\operatorname{Aut}(\mathbb{F})) = \operatorname{Aut}(\mathbb{F}) \cap X^* \subset \prod_{i=1}^m 2^{\mathbb{F}^{a(i)}}$ (logic action).

Strategy to find universal minimal flows

- \blacktriangleright Choose your favorite countable ultrahomogeneous structure $\mathbb F.$
- ▶ Consider its class Age(𝔅) of finite substructures.
- ► Try to enrich Age(F) with finitely many relations (among which a linear ordering) to obtain a class K^{*} such that
 - \mathcal{K}^* is a Fraïssé class with the Ramsey property.
 - \mathcal{K}^* has the expansion property over $Age(\mathbb{F})$.
- Express the limit of \mathcal{K}^* as $(\mathbb{F}, R_1^* \dots R_m^*)$.
- Describe the action $\operatorname{Aut}(\mathbb{F}) \curvearrowright \overline{\operatorname{Aut}(\mathbb{F}) \cdot (R_1^* \dots R_m^*)}$.
- ▶ Rk1: The original article deals only with m = 1, R₁^{*} =<, but generalizes easily to finite relational expansions.</p>
- ▶ Rk2: All universal minimal flows obtained that way are metrizable.

Graphs

• $\mathcal G$ finite graphs:

Theorem (Nešetřil-Rödl, 77)

Let $\mathcal{G}^{<}$ be the class of all finite ordered graphs. Then $\mathcal{G}^{<}$ has the Ramsey and the expansion property over \mathcal{G} .

Corollary

 $\operatorname{Aut}(\mathcal{R}) \curvearrowright M(\operatorname{Aut}(\mathcal{R}))$ is $\operatorname{Aut}(\mathcal{R}) \curvearrowright LO(\mathcal{R})$.

• \mathcal{H}_n finite K_n -free graphs:

Theorem (Nešetřil-Rödl, 77)

Let $\mathcal{H}_n^<$ be the class of all finite ordered K_n -free graphs. Then $\mathcal{H}_n^<$ has the Ramsey and the expansion property over \mathcal{H}_n .

Corollary Aut $(H_n) \curvearrowright M(Aut(H_n))$ is Aut $(H_n) \curvearrowright LO(H_n)$.

Partial orders

• \mathcal{P} finite partial orders:

Definition

Let $P \in \mathcal{P}$. A linear order on P is compatible when it extends $<^{P}$.

Theorem (Nešetřil, 05)

Let $\mathcal{P}^{e<}$ be the class of all finite compatibly ordered partial orders. Then $\mathcal{P}^{e<}$ has the Ramsey and the expansion property over \mathcal{P} .

Corollary

Let $eLO(\mathbb{P})$ be the class of all compatible linear orders on \mathbb{P} . Then $Aut(\mathbb{P}) \curvearrowright M(Aut(\mathbb{P}))$ is $Aut(\mathbb{P}) \curvearrowright eLO(\mathbb{P})$.

Vector spaces

• \mathcal{V}_F finite vector spaces, F finite field.

Definition

Let $V \in \mathcal{V}_F$. A natural linear ordering of V is obtained by

- fixing B linearly ordered basis of V,
- fixing a linear ordering of F with least element 0_F,
- taking the resulting lexicographical ordering induced on V.

 $\mathcal{V}_{F}^{n<}$: the class of naturally ordered finite vector spaces over F.

Vector spaces, cont'd

Theorem (Thomas, 86)

- $\mathcal{V}_{F}^{n<}$ is a Fraissé order class with reduct \mathcal{V}_{F} ,
- $\mathcal{V}_F^{n<}$ has the expansion property over \mathcal{V}_F .

Theorem (Graham-Leeb-Rothschild, 72)

 $\mathcal{V}_{F}^{n<}$ has the Ramsey property.

Corollary

Let $nLO(F^{<\omega})$ be the set of all linear orderings on $F^{<\omega}$ with natural restrictions on finite-dimensional subspaces. Then: $GL(F^{<\omega}) \curvearrowright M(GL(F^{<\omega}))$ is $GL(F^{<\omega}) \curvearrowright nLO(F^{<\omega})$.

The case of S(2)

- ► Finite substructures of (S(2), <) never have the Ramsey property: ∃2-coloring of the vertices with no monochromatic 3-cycle.
- Ramsey property holds if S(2) is enriched differently:

- ▶ Key fact: (S(2), S₁, S₂) ≅ (Q, Q₁, Q₂, <), Q₁, Q₂ dense subsets of Q (Reversing the arcs between points in different parts).
- Ramsey and expansion property hold for the corresponding finite substructures.

The case of S(2), cont'd

- $\operatorname{Aut}(S(2)) \frown M(\operatorname{Aut}(S(2)))$ is $\operatorname{Aut}(S(2)) \frown \overline{\operatorname{Aut}(S(2)) \cdot (S_1, S_2)}$.
- $\overline{\operatorname{Aut}(S(2)) \cdot (S_1, S_2)} \cong (\mathbb{S}^1 \text{ with rational and corational points doubled}).$
- ► Thus, Aut(S(2)) ~ M(Aut(S(2))) is Aut(S(2)) ~ (S¹ with rational and corational points doubled):

L. Nguyen Van Thé (Université Aix-Marseille 3) Rams

Ramsey theory and dynamics

Part VI

Perspectives

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

Down to earth

- Exploit further the equivalences between combinatorics and topological dynamics.
 - From combinatorics to topological dynamics (all examples so far)...
 ...The problem here is that proving the Ramsey property is usually difficult.
 - But also the other way around! Use dynamics to prove new Ramsey-type results!

...The problem here is that nobody really knows how to attack extreme amenability for closed subgroups of S_{∞} .

► Even when there is an extremely amenable group (not necessarily closed subgroup of S_∞) around, going back to combinatorics is not easy. Typical example: Gromov-Milman theorem: Is there a Ramsey theorem for finite ordered affinely independent Euclidean metric spaces, distances in Q?

Is metrizability of M(Aut(𝔅)) equivalent to existence of a finite relational expansion 𝔅^{*} with Ramsey and expansion property?

General

- Is there a unified approach to prove Ramsey property for classes of finite structures?
- How far can computations of universal minimal flows presented here go? Can it help to capture the case of concrete homeomorphism groups like Homeo(S²) or Homeo([0, 1]^N)?
- Recent developments of the theory to attack those last questions:
 - Projective version (Irwin-Solecki).
 - Dual version (Solecki).
 - ▶ Relational Polish metric structures (Ben Yaacov, Melleray, Tsankov).
- Systematize the transfer between finite combinatorics on Fraïssé classes (resp. any of the versions above) and groups (recent advances by Kechris-Rosendal, Tsankov).

Thank you very much for your attention!